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Bandstructure of two-dimensional periodic potentials in a 
magnetic field: a recursive Green-function approach 

R B S Oakeshott and A MacKinnon 
Blackelt Laboratory, lmprial College. London SW7 ZBZ, UK 

Received 1 February 1993 

Abstract. We show how the bulk band conductivity and density of stam of an elecrmn gas 
in a general twodimeNional periodic potential and magnetic field can be calculated using the 
recursive Green-function methad. Computational efficiency is mimized by using the gauge 
symmetry of Ihe problem. As an example we show the conductivity and density of states for a 
superlanice displaying the recursive Hofsla&r‘s-buUerRy specr”. 

1. Introduction 

The band structure of a two-dimensional electron gas mffi subject to a periodic potential 
and a magnetic field has an intricate structure depending on the number of flux quanta 
per unit cell of the periodic potential. In simple cases such as a weak potential [I-31, a 
tight-binding band [1,4], hopping between edge states 151 the magnetic field produces a 
recursively split spectrum. 

Experiments on lateral-surface superlattices [€&IO] approach the point where effects due 
to the splitting of the spectrum may be apparent. Real experiments however are generally 
performed with many electrons in each unit cell, and so many overlapping bands: with 
inelastic scattering: with a random potential from impurities; potentially with the periodic 
potential and the cyclotron energy of similar magnitudes; and with the magnitude of hopping 
terms between states in different unit cells depending on the magnetic field and the Fermi 
energy. We focus in this paper on the bulk effects which are likely to show the effects 
of band gaps in a simpler form than situations where edges are important [SI. In practical 
experiments, the effects of edge states may or may not be important, depending on the 
geometry of the sample, and the measurement being made. 

In this paper we show how the recursive Green-function method can be used to calculate 
the bulk band conductivity and density of states of lateral-surface superlattices. The paper is 
organized as follows. In section 2 we introduce the single-electron model used. We solve the 
model by approximating the continuous Hamiltonian by a discrete Hamiltonian on a square 
lattice, and we discuss the approximations and advantages involved in this in section 3. 
In section 4 we show how a minimal unit cell can be constructed, taking advantage of 
the gauge symmetry of the problem, and how the gauge symmetry can be used to calculate 
economically the Green function of a unit cell using the recursive Greed-function technique. 
In section 5 we show how the conductivity of the infinite, periodic system can be found 
from the  green^ function of the isolated unit cell, by using a small imaginary component to 
the energy to probe the group velocities of the states. In section 6 we show how the density 
of states can be found from the derivatives of the wavenumber with respect to the energy. 
In section 7 we show as an example calculations of the Hofstader’s butterfly [4] for this 
model. 

0953-8984/93i376971+12$07.50 @ 1993 IOP Publishing Ltd 6971 
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2. Model 

We adopt the simplest model for the electrons at the interface of a GaAs/AIGsAs 
heterostructure, and use the single-particle Hamiltonian 

R B S Oakeshott and A MacKinnon 

H$ = (1/2m*)(p - eA)*$ t V $  (1) 

for an electron confined to the x-y  plane, subject to an effective potential V ,  with a 
perpendicular magnetic field, and with an effective mass m'. In taking a single-particle 
picture, we are neglecting at the outset correlations, both of the Coulomb blockade [ 11-14] 
and of the fractional quantum Hall effect forms [15,16]. 

Both the periodic and random parts of the potential V are self-consistent functions of 
the structure of the device, the applied gate voltage, and the distribution of ionized donors. 
We do not attempt to calculate the form of V but consider the effect of a reasonable, fixed 
periodic potential, and include the effects of the random potential in a scattering time. As 
the density of states of the system varies the scattering time will vary, both because the 
phase space available to scatter into will change [17,18], and because the potential will vary 
as the screening length changes [ 19,201. We have not attempted to calculate the scattering 
time self-consistently, but instead assume a fixed scattering time. 

With the assumptions of a fixed scattering time and periodic potential, we calculate the 
longitudinal conductivity from a simple kinetic equationI211 

where r is the transpod scattering time, ux is the group velocity of the mode in the x 
direction, A is the area of the system, and f is the Fermi-Dim distribution function. 

Quation (2) is valid so long as it is a reasonable approximation to assume that electrons 
are scattered to a random mode, without regard to the distribution of the wavefunction, and 
so long as one can characterize the motion of the electrons by their group velocity. The 
first assumption is inappropriate where the conductivity is dominated by (spatially separated) 
edge states as for the quantum Hall effect [ 16,22-24]. The second assumption implies that 
the mean free path of a (Bloch) electron must be large compared to the lattice period. We 
therefore need uxr >> a. Using the Einstein relation, U = p(EF)eZD, where D is the 
diffusion constant, and p is the density of states, we require 

where a is the lattice period. 
For the single-electron picture to be appropriate, we must be able to neglect elecmn- 

electron correlations due to the Coulomb interaction. A basic requirement is that the 
bandwidth be large compared with a typical Coulomb energy. The worst case is for low 
Fermi energies, where there is of the order of one electron per unit cell, and the Coulomb 
interaction at short distances will only be screened by remote electrons in the gates. The 
intesaction energy will then be of the order of 

E p  N e2/4mocra. (4) 

For a lattice periodicity of 100 nm, E p  is approximately 1 meV. For higher Fermi energies, 
screening by electrons in the 2DEG will reduce the interaction energy. 
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3. Discrete Hamiltonian 

We approximate the continuum Hamiltonian (1) by a discrete Hamiltonian on a square 
lattice 12.51 with on-site potential H,, = V(r0 and nearest-neighbour hopping terms 
H;j = voexp(-i@) where 

Vo = h2/2m*lAr12 (5) 

and 

q5 = e A .  Arjf i .  (6) 

where A r  = r j  - r;. The phase @ ensures that the product round any loop of the hopping 
terms has a phase 2n@/Qo, where @ is the magnetic flux through the loop, and @O is the 
single electron flux quantum hie.  A is taken to be defined on the bonds of the lattice. 

The use of a discrete real-space Hamiltonian, rather than using a Landau-level basis, 
has several advantages: it is easier to study arbitrary potentials, and in particular hadwall- 
antidot, type potentials; the method can be applied easily to cases where the magnetic field 
is modulated and the Landau states do not diagonalize the Hamiltonian even in the absence 
of an electrostatic potential; it is easy to extract the real-space density of states, and it is 
an approach that can also be applied to finite systems, making it easier to see the effect of 
introducing edges into the system. 

The use of a discrete Hamiltonian gives rise to errors for Fermi energies that are large 
compared with the bandwidth of the discrete lattice, we must therefore have EF << vo. We 
also expect significant errors for magnetic fields where the magnetic length is small relative 
to the period of the lattice, (or equivalently where the number of flux quanta per square of 
the discrete lattice is not much less than unity), so we need BAr2 < hie.  If the magnetic 
length is not large compared with the lattice spacing, then Landau levels, which should be 
dispersionless, acquire a dispersion determined by the difference in energy between a state 
centred on a lattice site, and a state cened  between two lattice sites. A simple estimate 
of the magnitude of the effect can be found by taking the continuum wavefunction for the 
lowest Landau level, which, in the Landau gauge, is 

and finding the expectation value of the energy of this wavefunction with the discrete 
Hamiltonian. The difference between the energy of the state centred on the a lattice site, 
and that between two lattice sites, is approximately propoltional to 

uo e~p[-4.3(ib/Ar)~] 

for ib  5 A r .  The dispersion is therefore essentially zero when !b is significantly greater 
than the lattice spacing. 

4. Unit cell in a magnetic field 

Since the properties of a physical system are expected to vary continuously with the magnetic 
field [4], we restrict our calculation to magnetic fields with a rational number of flux quanta 
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per unit cell. By choosing a suitable gauge, we can then conshllct a unit cell that contains 
an integer number of superlattice cells, and of flux quanta. 

Consider a magnetic field with p / 9  flux quanla to each unit cell of the super-lattice 
potential. 

R B S Oakeshott and A MacKinnon 

We use the vector potential 

A, = -B(y  mod a)(qa/Ax)[ int(x/qa)  - int[(x + A x ) / q a l ) )  

A ,  = -B(x mod qa)  
(9) 

where the coordinates of the bonds are the coordinates of their lower left-hand ends, 
and Ax and Ay are the lengths of the bonds in the x and y directions. The combined 
vector and superlattice potential is then periodic in the x direction with period qa, and 
in the y direction with period a ,  This potential, which look complicated, is essentially a 
conventional vector potential using the Landau gauge, A = (0, - B x ,  0) , with a gauge 
transform A, H A,  - nBqa where n labels different unit cells in the x direction. The A, 
terms ensure that 

V x A =  CA. A r / a 2  = B 
100p 

for every cell of the discrete lattice. In a continuum Hamiltonian this gauge would be 
discontinuous, but there are no problems within the discrete representation. 

p- 
6 I Figure 1. Vector piential for a magnetic d with 
&A....- Mf a flux quantum per unit cell and a 3 x 3 lattice 

The vector potential used is more readily understood by an example. Figure 1 shows 
schematically the potential for a magnetic field with half a flux quantum to each period of 
the onsite superlattice potential. The size of the unit cell is chosen so that the phase on the 
bonds in the x direction between unit cells is periodic with the width of the unit cell. 

4.1. Recursive Green-function method 

Since we have to handle unit cells q times larger than the unit-cell size needed to represent 
the superlattice potential, we need a method which scales well to large system sizes. The 
recursive Green-function method is one such [26-291. 

The method is now standard (see Sols et a1 [29] for details) and we simply remind 
the reader of the bare outline. The Green function of a small part of the system is found 
analytically, or by solving the matrix equation (E - H)G = I for the small system. The 
system is enlarged by successively solving Dyson's equation, G = GO + Go AH G where 
AH is the change to the Hamiltonian in order to extend the system. To avoid numerical 
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Figrie 2. Example of the use of the gauge symmemy of the problem to minimize the computation 
needed. Rotating the triangle A gives triangle Z. in the same position as B. but in a different 
gauge. Applying the gauge tansformation described in the text allows us to calculate the Green 
function for hiangle B from the gauge transformation for triangle 2. 

complications we work with a small imaginary part to the energy, which we exploit below 
to determine the group velocity. 

Here we point out that by making use of the gauge symmetry of the problem we can 
reduce greatly the computational problem. For example we form the Green function of one 
square unit cell of the superlattice potential from the Green functions of the four triangles 
shown in figure 2, where the Green functions of the four triangles are identical up to a gauge 
transform. Consider finding the Green function of triangle B from triangle A. Mapping the 
coordinates of triangle A gives the Green function for triangle 2, with the right position, 
but in the wrong gauge. The general gauge transform needed is 

A A  = (+ay + &, +ax + B y ,  0 ) .  (11) 

The gauge transform is performed by multiplying the wave function at each point by 
exp(if) where Vf = AA. The Green function G I ,  between two sites 1 and J, in therefore 
transformed according to 

(12) A H A' = A + AA G H G' = e x p [ i f ( l ) l G ~ ~  exp[-if(J)]. 

5. Application to periodic system 

To evaluate the properties of the periodic system, we first use the translational symmetry 
in the y direction, and Fourier transform in that direction. Introducing indices X. Y for the 
unit cells of the full potential, and Fourier transforming with respect to Y ,  we have 

~ ; t j t  = CHivjv,exp[-ik(Y - Y ' ) ]  (13) 
Y' 

G;y j " ,  = - ' j'' &G;x,xexp[ik(Y - Y')]. (14) 2n -= 
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N- I N N i l  
L R L  R L  R 

Figure 3. Lateiling of lhe cells joined logelher to form an infinite one.dimensional suip. me 
rectangles represent the individual cells, calculated with a panicular wavenumber perpendicular 
U) the ship. 

For each k we solve for the Green h c t i o n  of an infinite periodic strip following the 
method of Chase [30]. Given the Green function for a unit cell we form the transfer equation 
for a periodic strip in the X direction. 

Let us denote the sites on the left- and right-hand surfaces of this unit cell by R and L 
respectively. and number the unit cells N,  N + I ,  N +2, .  . ., so that (see figure 3) GRN-I ,LN 
is the sub-mahix of the Green function between the right side of cell N - 1 and the left 
side of cell N .  Applying Dyson’s equation to the change from isolated cells, to an infinite 
strip of cells we have 

where I is the identity matrix. The eigenfunctions and values of the generalized eigenvalue 
equation 

then give the eigenstates of the SchrUdinger equation at the given energy. 

5.1. Green function of an infinite strip 

To derive the Green function in the infinite strip, it is most convenient to use Dyson’s 
equation again, applied to G L N L N ,  and the sub-matrices of G to which it is coupled. 
Substituting into equation (15) the relevant choices of M ,  we have: 

G L N L N  = G O , N L N  + G O , N L N V G R N - I . L N  + G ~ L N R N v ~ G L N + I . L N  

G R N - I L N  = G O , N - , . L N - ~ V G R N - ~ . L N  + G i N - 1 , R N - I  ~ ~ G L N . L N  

G r n t i . L i v  = G O , N + ~ . L N + , V G R N , L N  + G O , N + , , ~ ~ + , V ~ G L N + ~ . L N  

GRN.LN = GO,,,,, + G O , N , L N V G R N - I , L N  + G O , N , R , V ~ G L N + I  . L N .  

(17) 

We now use the periodicity of the system to find a closed set of equations for the Green 
function. Let (1 be the (diagonal) matrix of eigenvalues for modes travelling to the left. Let 
R be a matrix with the halves of the eigenvectors corresponding to the sites on the right face 
of the unit cell for these modes; and let L be a matrix with the halves corresponding to the 
left face of the unit cell. Let a’, R’, L’ be the corresponding matrices for modes travelling 
in the other direction. We use a sufficiently large imaginary component to the energy that 
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we can distinguish the eigenvalues for each direction according to whether their modulus 
is smaller or greater than unity [26]. 

Noting that G;,,,, = G;N-l ,RN-l  etc.; writing GLN,LN = L P L N , L N ;  and using 
GRN-Z.LN = R C I P R N - I . L N  etc we obtain a closed set of equations for the Green function 
in the infinite system: 

L ~ L N L N  = G ~ N L N  + GO,NLNVRPRN-I,LN + G O , N R N V ~ L P L N + I . L N  

R P R N - I . L N  = G O , N , L N V R ~ P R N - I . L N  + G O , N , R N V ~ L P L N . L N  

LPLN+I.LN = 

RPRN.LN = G;N,LN + GO,N,L”JRPRN-I,LN + G ; , , , , ~ ~ L P L N + I , L N .  

(18) 
GO,N+~.LN+IVRPRNW + %+i .RN+i  V ~ L ~ ‘ P L N + I . L N  

Having solved these equations for the Green function on the edges of the unit cells, 
we can use Dyson’s equation to obtain other elements of the Green function, including the 
diagonal elements that give the density of states. 

5.2. Conductivityfrom transfer matrix 

We now transform equation (2) into a more convenient form. Writing in full the sums over 
modes, we have 

where N, and Ny are the number of unit cells in the x and y directions, and U, and ay 
are the dimensions of the unit cell of the full potential. Noting that U, = h - ’ a E / a k ,  and 
changing variables from k, ,  k, to E ,  k,: 

where the factor a k , / a E  comes from the change of variables. Simplifying, 

Since we work with a small imaginary component to the energy, there is a simple way 
to extract a k , / a E .  The wavenumber k is given by (logA)/a,, where A is an eigenvalue of 
equation (16). Within a band a k / a E  is real, so the change to k caused by the imaginary 
part of the energy is, to first order, imaginary. We therefore have 

a k p E  = Im(k)/Im(E). (22) 

With an infinitesimal imaginary part of E the expression is exact; in practice values of 
Im(E)/Re(E) of the order of are adequate. and numerically stable. 
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I I I I I 6 ’  I I I I - 3.0 ... _ .  ... 
5 - 2.5 h ’I :: 1.0 ,IN 

0.5 

0.0 
-10 -5 0 5 10 15 20 

0. 
-2.5 -20 -1.5 -1.0 -0.5 0.0 

Fermi Energy ( meV ) Fermi Energy (meV) 

Figure 4. Density of sates (relative to the density 
of states of a ZDEG with no applied potential) with no 
magnetic field present, 

Fwre 5. Specmm of lowest tighl-binding band, with 
magnetic fields with p f l .  pf2, pf3, pf4 and p/J flux 
quanta per unit cell, calculated with a resolution S E  = 
0.024 mev. 

6. Density of states 

We now show how the density of states can be found from the sensitivity of the eigenvalues 
to the energy. The details of the derivation are in the appendix. We find that the density of 
states is given by 

This is a generalization to many modes, and to complex energies of the simple one- 
dimensional result of p = ak/aE. 

The sum of derivatives of the wavenumbers can be found numerically by performing 
the calculation of the eigenvalues for two differing values of the imaginary component of 
the energy. The density of states is then given by 

Note that there is no need to identify corresponding eigenvalues at the two energies in order 
to perform the differentiation. Also note that -8 logh/aE is not necessarily positive so 
the individual contributions to the sum cannot be identified as the densities of states in 
individual modes. 

7. Tight-binding Iimit-Hofstader’s buttemy 

Figure 4 shows the density of states with no magnetic field present for the potential 

V(X, y) = $~o[cos(;?nx/n) + cos(2~y/a)] (3) 
with VO = 20 meV and a = 50 nm. (Note that with an infinitesimal imaginary component 
to the energy, the results are unchanged under the transformation a -+ a/& E + E / A Z ,  
U -+ u/Az, and B + BA’. where a is the lattice period, E the Fermi energy, U the 
conductivity, B the magnetic field, and A a scaling factor.) 
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As an example, we have examined how the tight-binding like band at low energy evolves 
with magnetic field. With a magnetic field and a periodic potential present, we expect a 
recursively split spectrum. Figure 5 shows the spectrum for fields with up to five flux quanta 
per unit cell. With p / q  flux quanta per unit cell the band is split into q subbands. The 
recursively split spectrum of Hofstader’s butterfly [41 with the band split into q subbands 
when there me p / 9  flux quanta per unit cell is clearly seen. 

25 

plq-211 

- 
s I ;::E m = 413 

$ plq - 111 

s 
6 

10 
c 

plq.1n 
5 

plq = w1 

.(I 
Figure 6. Band Conductivity in lowest tighl-binding band for fields 
with different numbers p f q  of flux quanta per unit cell. 

-1 
0 
.2 5 -2 - 1  5 

Fwmi Enemy I meV ) 

Using our method we can readily evaluate the band conductivity for this case. Figure 6 
shows some representative results calculated with 5 = 38 ps and a temperature of 0.3 K. 
The results show the expected suppression of the band conductivity for larger values of q. 
The results show that the mean free path of an electron in this limit, assuming the fixed 
relaxation time, is of the order of 2000 nm. In practice electron interaction effects are likely 
to be important in this single-band limit, where there is of the order of one electron per unit 
cell. A rough estimate of the relevant energy scale is the interaction energy between two 
electrons separated by a lattice constant, e z / 4 m a  = 2 meV, which is comparable to the 
bandwidth. At higher electron densities screening, and the larger bandwidths, will reduce 
the importance of electron interactions, and we address this limit in a future paper. 

8. Conclusions 

We have shown how the recursive Green-function method can be used to calculate the 
band conductivity and density of states of lateral-surface superlattices in the presence of 
magnetic fields. By including an imaginary component to the energy, we can deduce 
the group velocity of the states at a given energy. By calculating the sensitivity of the 
wavenumbers of the states to the imaginary part of the energy, or by directly calculating 
the diagonal elements of the Green function we can calculate the density of states. 

As a simple example we have shown results for a superlattice in the tight-binding limit, 
and shown the energy scale on which Hofstader’s butterfly exists. In practice the recursive 
spectrum is likely to be unobservable in this limit, because of the effects of disorder [31] 
and the Coulomb blockade [ I  I ,  12,14,32]. Results for regimes where commensurability 
effects are likely to be more easily observed are in preparation. 
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Appendix 

R B S Oakeshott and A MacKinnon 

We now show in detail how the density of states can be found from the sensitivity of 
the eigenvalues to the energy. To show the relationship we use the full Hamiltonian for 
the strip, rather than using the Green function on the suiface of the unit cells, and the 
components of the Hamiltonian between cells as above. 

The Green function of the system satisfies 

where H is the Hamiltonian between sites in one unit cell, V is the Hamiltonian between 
sites in unit cell N and cell N - 1, and Vt  is the Hamiltonian between sites in cell N - 1 and 
cell N .  We first derive an explicit formula for the Green function in terms of the eigenstates 
of the homogeneous equation 

where by construction the eigenvectors have the form indicated. We then show how the 
Green function can be found in terms of the derivatives of the eigenvalues with respect to 
the energy. 

Because the term V only couples sites on the surface of the unit cell. V is in general 
singular. The eigenvalues of equation (A2). however, are the same as those of equation (16), 
except for the inclusion of modes with Vx = 0, which do not contribute to the surface 
Green function. In the following section we consider only the subspace of states for which 
Vx is not singular. The existence of states for which Vx = 0 is an artifact of working on 
a discrete lattice, where only a finite number of modes exist on the surface. We therefore 
expect the states that we are excluding to be unimportant for energies where the discrete 
lattice is a good approximation to the continuum. Comparison of the results of the formula 
we will describe, and the density of states calculated directly from the Green function, 
confirm this. 

Let U be the matrix whose columns are the upper halves, x. of the eigenvectors 
propagating to the right, and let X be the corresponding diagonal matrix of eigenvalues. 
Let W and y be the corresponding matrices for modes travelling to the left. Writing 
the components of the Green function in terms of the eigenvectors of (A2) so that 
G N + X N  = UXxP+, G N - X N  = W-(-'P- and G N N  = UPO, the equation for the Green 
function gives 

VtuXP, = (E - H)uPo - Vwy-lP- - I 
VtuX2P+ = (E - H)uXP+ - VuPo 
V ~ U P O  = (E - H)wy-'P- - Vwy-'P-. 

The matrices U and W fulfil the equations 

VtuX = (E - H)u - VuX-' (A6) 

and 

Vtw-y= (E-H)w-Vw-(-'. 
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Using equations (AS) and (A61 and equations (A4) and (A7) we find that 

P+ = Po = u-'wP-. 
Substituting into (A3), and rearranging using (A6) 

Po = [Vt(W7W'U - uX,]-' 

G,, = UPO = l /V t (Ww- '  - uAu-'). 

(-48) 

(AS) 

W O )  

so that 

Writing (A2) in terms of the matrices U and w, 

Equation (AI I )  has the form &An = Tq5n. considering a perturbation AT,  and keeping the 
terms linear in the perturbation, we have 

(A 12) 
Let 4; be the left-handed eigenvectors of T ,  such that @;& = Snm. Multiplying on the left 
by $; gives 

AAn = @;'AT4". (A131 
The matrix of left-handed eigenvectors, orthogonal to the eigenvectors of equation (A1 1) 

) (A14) 
(U - w-yw-'uA-') E U -(w7-'w-'u - u x - y  
(W - u~u-'w7-')- '  -(uA-'u-'w -w7-1)-' ' 

&AAn + @AAn = TA@" + AT@". 

is 

( w;-l)-l = ( 
Taking a perturbation AE in equation (AI I )  and multiplying the right-hand side of the 
equation by the inverse matrix. equation (A14). gives 

(U - wrw-'uA-')-' - ( w 7 - ' w ' u  - uA-')-' 
(W - uXu-'wy-')-' -(uA-'u-'w - wy-')-' 

(U - wyw-'uA-')-'Vt-'u (U - w7w-'uA-')-'Vt-'w 
(W - uAu-'wy-')-'vt-'u (W - uAu-'w7-') E "vt-lw 

The diagonal elements of (Al5) give the values of B A p E  and aT/aE. Let Q be the upper 
lefi hand sub-matrix of equation (AIS), 

Q = (U -ww-'uA)- 'Vt- 'u.  ( A W  

uA-IQu-' = I/Vt(uAu-' - W ~ W - ' )  = GNN.  

Taking the trace of equation (A17) and noting that Tr ABA-' = TrA we have 

The diagonal elements of A-'Q are then a log(A)/aE. Simplifying, we find that 

(-417) 

and so the density of states is given by 
I aiog?. 

p = - - ImC-  n aE . 
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